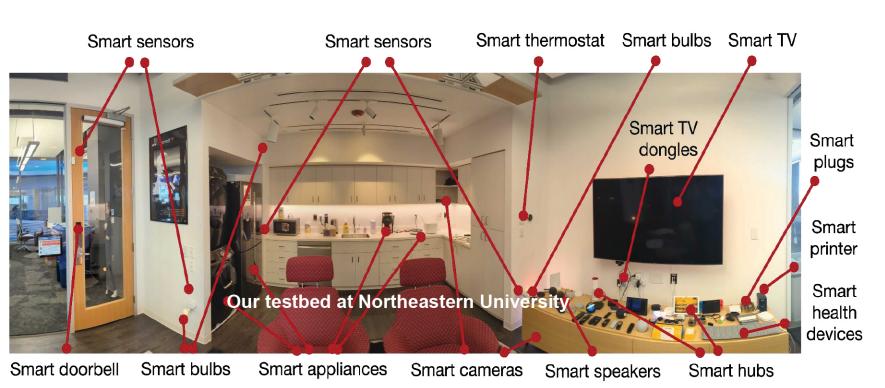


BehavloT: Using Network-Inferred Behavior Models to Detect Anomalous IoT Behavior

Tianrui Hu, Daniel J. Dubois, David Choffnes **Northeastern University**



Motivation: IoT diversity and opaqueness

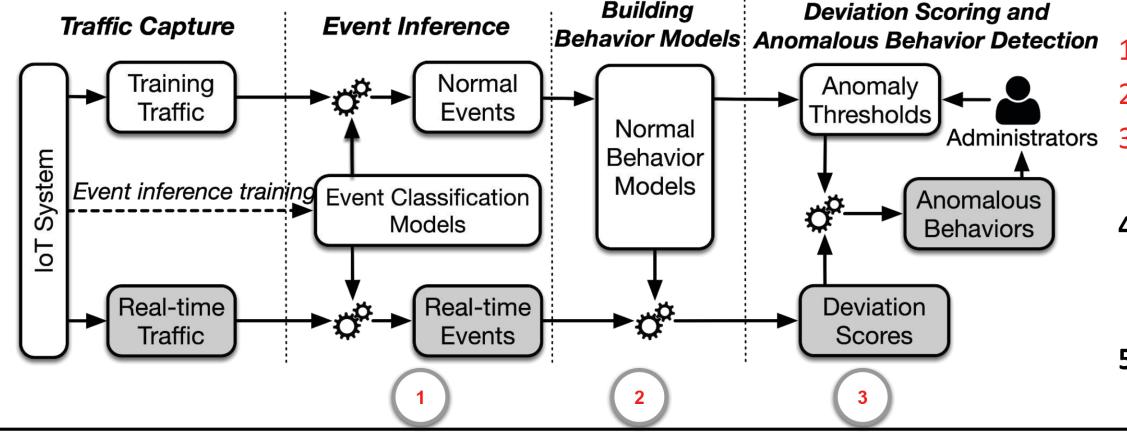
Key challenges for mitigating the security, privacy, and safety risks of smart home IoT deployments:

- diversity: a wide variety of devices and behaviors
- opaqueness: typically closed systems that provide little insight

We need a solution that

- detects a variety of anomalous behaviors
- works across a wide range of IoT devices.
- requires **no privileged access** to devices or APIs.
- provides insight and contextual information about how behavior changed.

BehavloT



Contributions

- A platform- and protocol-agnostic event inference method.
- An efficient way to **model IoT behaviors** from events.
- A system to measure behavior deviations and detect anomalous behaviors.
- 4. An evaluation both in a controlled and in an uncontrolled setting in our testbed that consists of 49 devices as a part of a 3-month user study involving 40 participants.
- 5. Datasets and software artifacts available to facilitate follow-up research.

Key Insights: predictable and simple IoT devices

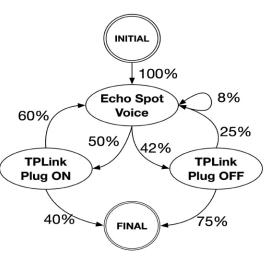
Most consumer IoT devices:

- network traffic typically exhibits predictable patterns, though mostly encrypted.
- relatively simple, having a limited set of functionalities and states.

Our Solution: infer events, model behaviors, detect changes

Our idea is to:

- 1. infer events from IoT devices' network traffic
- 2. model normal IoT behaviors from inferred events
 - function-related events as a probabilistic state-machine [Fig 1]
 - periodic events as timers [Fig 2]
- **detect anomalous behaviors** that are significantly inconsistent with the inferred behavior models based on statistical metrics and data [Fig 3]



behavior model

Figure 1. Function-related

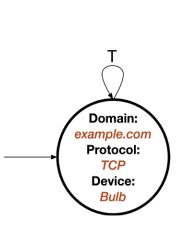
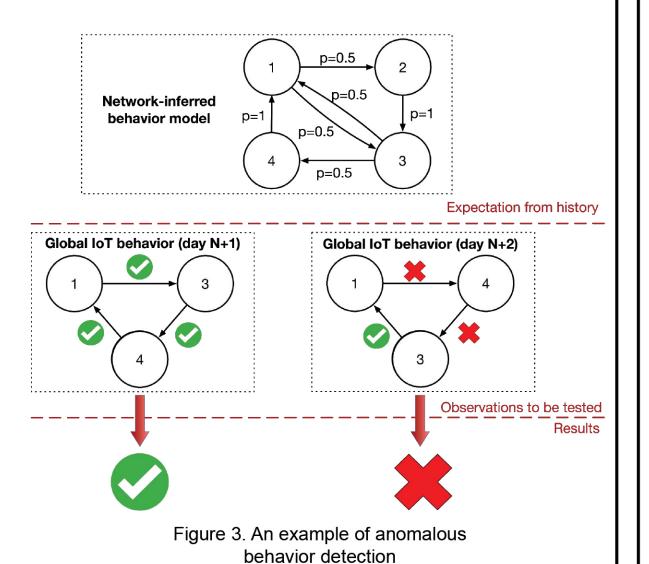


Figure 2. Periodic event behavior model



Evaluation

RQ1: Can we infer events from IoT device network traffic?

Yes, we can accurately infer events.

- 98.91% ACC on function-related events that meet or exceed existing approach.
- Majority of traffic exhibits periodicity.
- 99.24% ACC on **periodic events**.
- Only 0.52% of traffic flows are neither function-related nor periodic events.

Device	Func-related Event Accuracy	Periodic Event Accuracy
Home Auto & Sensor	99.15%	99.86%
Camera	98.95%	99.94%
Smart Speakers	96.52%	97.65%
Hub	100%	98.01%
Appliance	100%	99.62%
Total	98.91%	99.24%

Event inference accuracy per IoT device category.

Our solution:

- only relies on network traffic
- works well on a wide range of devices showing the **generalizability** and deployability of our approach.

RQ2: Can we model IoT behaviors from inferred

Yes, we can model a variety of IoT behaviors.

- cover all network traffic flows by three behavior models.
- provide more flexibility and scalability for representing IoT behaviors.

RQ3: Can we use behavior models to detect anomalous behavior and help admin determine whether such behavior is harmful? Yes, we show that

- our deviation metrics and thresholds chosen from statistical data are good for measuring differences in behaviors and detect significant ones as anomalous behaviors. [Fig 4]
- BehavloT can detect many anomalous behaviors both in controlled and uncontrolled experiment in our testbed. [Fig 5]
- BehavloT provides contextual information of each detected anomalous behaviors and can help identify a variety of real-world threats that may cause privacy, security, and/or safety issues.

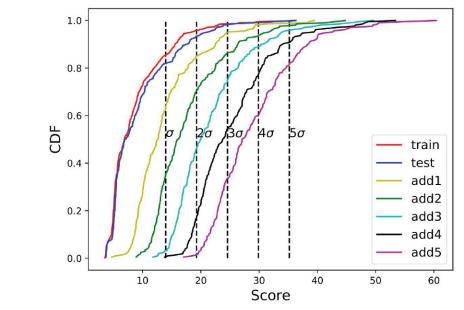


Figure 4. The deviation scores increase while adding more differences in behaviors. The thresholds are based on standard deviation σ of the scores.

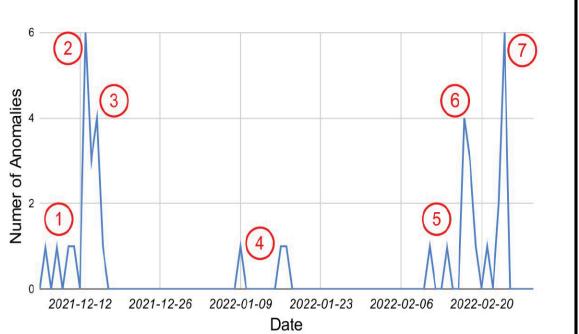


Figure 5. Anomalous behaviors due to function-related events over three month in the uncontrolled experiment

Privacy: misactivation, data exfiltration **Security**: malware, unauthorized access Safety: DoS, malfunctions

